How do you factor 81x^4-181x4−1?
1 Answer
Explanation:
The difference of squares identity can be written:
A^2-B^2 = (A-B)(A+B)A2−B2=(A−B)(A+B)
We can use this a couple of times to find:
81x^4-1 = (9x^2)-1^281x4−1=(9x2)−12
color(white)(81x^4-1) = (9x^2-1)(9x^2+1)81x4−1=(9x2−1)(9x2+1)
color(white)(81x^4-1) = ((3x)^2-1^2)(9x^2+1)81x4−1=((3x)2−12)(9x2+1)
color(white)(81x^4-1) = (3x-1)(3x+1)(9x^2+1)81x4−1=(3x−1)(3x+1)(9x2+1)
The remaining quadratic factor is always positive for real values of
We can treat it as a difference of squares using the imaginary unit
9x^2+1 = (3x)^2-i^2 = (3x-i)(3x+i)9x2+1=(3x)2−i2=(3x−i)(3x+i)
So if we allow complex coefficients then:
81x^4-1 = (3x-1)(3x+1)(3x-i)(3x+i)81x4−1=(3x−1)(3x+1)(3x−i)(3x+i)