How do you factor 8a^3+27(x+y)^38a3+27(x+y)3?

2 Answers
Apr 11, 2015

The answer is:

(2a+3x+3y)(4a^2-6ax-6ay+9x^2+18xy+9y^2)(2a+3x+3y)(4a26ax6ay+9x2+18xy+9y2)

If you write:

8a^3+27(x+y)^3=(2a)^3+[3(x+y)]^3=(1)8a3+27(x+y)3=(2a)3+[3(x+y)]3=(1)

This is a sum of two cubic, and you can use this rule:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2).

So:

(1)=[2a+3(x+y)][(2a)^2-(2a)*3(x+y)+3^2(x+y)^2]=(1)=[2a+3(x+y)][(2a)2(2a)3(x+y)+32(x+y)2]=

=(2a+3x+3y)(4a^2-6ax-6ay+9x^2+18xy+9y^2)=(2a+3x+3y)(4a26ax6ay+9x2+18xy+9y2).

Apr 11, 2015

Temporarily simplify be replacing
8a^3 = (2a)^38a3=(2a)3 with p^3p3
and
27(x+y)^3 = (3(x+y))^327(x+y)3=(3(x+y))3 with q^3q3

So 8a^3+27(x+y)^38a3+27(x+y)3
becomes p^3+q^3p3+q3
which has factors
(p+q)(p^2-pq+q^2)(p+q)(p2pq+q2)

Restoring the original values, this becomes
(2a + 3(x+y))*(4a^2 - 6a(x+y) +9(x+y)^2)(2a+3(x+y))(4a26a(x+y)+9(x+y)2)

It might be tempting to attempt to further factor the right-most term but a quick check using the formula for roots
(-b+-sqr(b^2-4ac))/2ab±sqr(b24ac)2a reveals that no Real roots are possible
[be careful not to confuse the aa in this general formula with the aa in the example expression]