How do you factor (a+2b)^3 - (a-2b)^3?

1 Answer
Apr 15, 2015

Remembering that a difference of cubes can be factored:

a^3-b^3=(a-b)(a^2+ab+b^2),

then:

(a+2b)^3 - (a-2b)^3=

=[(a+2b) - (a-2b)][(a+2b)^2+(a+2b)(a-2b)+(a-2b)^2]=

=(a+2b-a+2b)(a^2+4ab+4b^2+a^2-4b^2+a^2-4ab+4b^2]=

=4b(3a^2+4b^2).

But, in this case, there is a faster and easier way:

(a+2b)^3 - (a-2b)^3=

=a^3+6a^2b+12ab^2+8b^3-a^3+6a^2b-12ab^2+8b^3=

=12a^2b+16b^3=4b(3a^2+4b^2).