How do you factor a^3x^2 - 16a^3x + 64a^3 - b^3x^2 + 16b^3x - 64b^3?

1 Answer
Apr 26, 2016

a^3x^2-16a^3x+64a^3-b^3x^2+16b^3x-64b^3

=(a-b)(a^2+ab+b^2)(x-8)^2

Explanation:

Factor by grouping:

a^3x^2-16a^3x+64a^3-b^3x^2+16b^3x-64b^3

=(a^3x^2-16a^3x+64a^3)-(b^3x^2-16b^3x+64b^3)

=a^3(x^2-16x+64)-b^3(x^2-16x+64)

=(a^3-b^3)(x^2-16x+64)

The first factor can be factorised using the difference of cubes identity:

(a^3-b^3) = (a-b)(a^2+ab+b^2)

The second factor is a perfect square trinomial:

x^2-16x+64 = (x-8)^2

So:

a^3x^2-16a^3x+64a^3-b^3x^2+16b^3x-64b^3

=(a-b)(a^2+ab+b^2)(x-8)^2