How do you factor a^9 + b^12 c^15?
1 Answer
Dec 5, 2015
Explanation:
The sum of cubes identity tells us that:
A^3+B^3 = (A+B)(A^2-AB+B^2)
Hence:
a^9+b^12c^15=(a^3)^3+(b^4c^5)^3
= (a^3+b^4c^5)((a^3)^2-(a^3)(b^4c^5)+(b^4c^5)^2)
= (a^3+b^4c^5)(a^6-a^3b^4c^5+b^8c^10)
If we allow Complex coefficients then this can be factored further as:
= (a^3+b^4c^5)(a^3+omega b^4c^5)(a^3+omega^2 b^4c^5)
where