How do you factor a perfect square trinomial 4a^2 − 10a − 254a210a25?

1 Answer
Jun 7, 2015

The equation #4a^2-10a-25 is not a perfect square trinomial. You will have to factor it with the quadratic formula.

Perfect square trinomials are the result of squaring binomials:

(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2
(a-b)^2=a^2-2ab+b^2(ab)2=a22ab+b2

The last number in a perfect square trinomial cannot be negative because it is a squared number. For example:

(3x-5)^2=(3x-5)(3x-5)(3x5)2=(3x5)(3x5)

Foil (3x-5)(3x-5)(3x5)(3x5).

9x^2-15x-15x+259x215x15x+25 =

9x^2-30x+259x230x+25