How do you factor a perfect square trinomial # 4a^2 − 10a − 25#?

1 Answer
Jun 7, 2015

The equation #4a^2-10a-25 is not a perfect square trinomial. You will have to factor it with the quadratic formula.

Perfect square trinomials are the result of squaring binomials:

#(a+b)^2=a^2+2ab+b^2#
#(a-b)^2=a^2-2ab+b^2#

The last number in a perfect square trinomial cannot be negative because it is a squared number. For example:

#(3x-5)^2=(3x-5)(3x-5)#

Foil #(3x-5)(3x-5)#.

#9x^2-15x-15x+25# =

#9x^2-30x+25#