How do you factor m^3 + (m+3)^3m3+(m+3)3?

2 Answers
May 21, 2018

(2m+3)*(m^2+3m+9)(2m+3)(m2+3m+9)

Explanation:

Using (a+b)^3=a^3+3a^2b+3ab^2+b^3(a+b)3=a3+3a2b+3ab2+b3

May 21, 2018

(2m+3)(m^2+3m+9)(2m+3)(m2+3m+9)

Explanation:

"this is a "color(blue)"sum of cubes"this is a sum of cubes

"which factors in general as"which factors in general as

•color(white)(x)a^3+b^3=(a+b)(a^2-ab+b^2)xa3+b3=(a+b)(a2ab+b2)

"here "a=m" and "b=m+3here a=m and b=m+3

rArrm^3+(m+3)^3m3+(m+3)3

=(m+m+3)(m^2-m(m+3)+(m+3)^2)=(m+m+3)(m2m(m+3)+(m+3)2)

=(2m+3)(m^2-m^2-3m+m^2+6m+9)=(2m+3)(m2m23m+m2+6m+9)

=(2m+3)(m^2+3m+9)=(2m+3)(m2+3m+9)