How do you factor m^3 + (m+3)^3m3+(m+3)3?
2 Answers
May 21, 2018
Explanation:
Using
May 21, 2018
Explanation:
"this is a "color(blue)"sum of cubes"this is a sum of cubes
"which factors in general as"which factors in general as
•color(white)(x)a^3+b^3=(a+b)(a^2-ab+b^2)∙xa3+b3=(a+b)(a2−ab+b2)
"here "a=m" and "b=m+3here a=m and b=m+3
rArrm^3+(m+3)^3⇒m3+(m+3)3
=(m+m+3)(m^2-m(m+3)+(m+3)^2)=(m+m+3)(m2−m(m+3)+(m+3)2)
=(2m+3)(m^2-m^2-3m+m^2+6m+9)=(2m+3)(m2−m2−3m+m2+6m+9)
=(2m+3)(m^2+3m+9)=(2m+3)(m2+3m+9)