How do you factor #(p-5)^3+125#?
1 Answer
Jan 23, 2016
Explanation:
The sum of cubes identity can be written:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
Here, we have
#(p-5)^3+125#
#=(p-5)^3+5^3#
#=((p-5)+5)((p-5)^2-(p-5)(5)+5^2)#
#=p(p^2-10p+25-5p+25+25)#
#=p(p^2-15p+75)#
The internal quadratic