How do you factor (r+6)^3-216(r+6)3216?

1 Answer
May 2, 2016

(r+6)^3-216=r(r^2+18r+108)(r+6)3216=r(r2+18r+108)

Explanation:

The difference of cubes identity can be written:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

We can use this with a=(r+6)a=(r+6) and b=6b=6 as follows:

(r+6)^3-216(r+6)3216

=(r+6)^3-6^3=(r+6)363

=((r+6)-6)((r+6)^2+(r+6)(6)+6^2)=((r+6)6)((r+6)2+(r+6)(6)+62)

=r((r^2+12r+36)+(6r+36)+36)=r((r2+12r+36)+(6r+36)+36)

=r(r^2+18r+108)=r(r2+18r+108)

color(white)()
Footnote

The remaining quadratic factor cannot be factorised further using Real coefficients.

It can be factorised by completing the square using Complex coefficients:

r^2+18r+108r2+18r+108

=(r+9)^2-81+108=(r+9)281+108

=(r+9)^2+27=(r+9)2+27

=(r+9)^2-(3sqrt(3)i)^2=(r+9)2(33i)2

=((r+9)-3sqrt(3)i)((r+9)+3sqrt(3)i)=((r+9)33i)((r+9)+33i)

=(r+9-3sqrt(3)i)(r+9+3sqrt(3)i)=(r+933i)(r+9+33i)