How do you factor the sum or difference of two cubes x^3-27?

1 Answer
Apr 9, 2015

The factor of x^3-27=(x-3)(x^2+3x+9)

Beginning Equation:

x^3-27

This is a case of factoring difference of cubes.

(a^3-b^3)=(a-b)(a^2+ab+b^2)

For (x^3-27):

a^3=x^3

a=root(3)(x^3)=x

b^3=27

b=root(3)(27)=3

a=x, b=3

(x^3-27)=(x-3)(x^2+(x*3)+9)=

(x-3)(x^2+3x+9)