How do you factor x^12+8?

1 Answer
Feb 16, 2016

Use some identities to find the quadratic factors of x^12+8

Explanation:

First notice that x^12 >= 0 for any Real value of x. So x^12+8 >= 8 > 0 for any Real x and this polynomial has no linear factors with Real coefficients.

We can find all of the quadratic factors as follows:

The sum of cubes identity can be written:

a^3+b^3 = (a+b)(a^2-ab+b^2)

Hence:

x^12+8=(x^4)^3+2^3

=(x^4+2)((x^4)^2-(x^4)(2)+2^2)

=(x^4+2)(x^8-2x^4+4)

Notice that:

(a^2-kab+b^2)(a^2+kab+b^2)=(a^4+(2-k^2)a^2b^2+b^4)

In particular, if k=sqrt(2) then we find:

(a^2-sqrt(2)ab+b^2)(a^2+sqrt(2)ab+b^2)=a^4+b^4

Hence (putting a=x and b=root(4)(2)) we find:

(x^4+2) = (x^2-root(4)(8)x+sqrt(2))(x^2+root(4)(8)x+sqrt(2))

If instead we put k=sqrt(3) then we find:

(a^2-sqrt(3)ab+b^2)(a^2+sqrt(3)ab+b^2) = a^4-a^2b^2+b^4

So if we let a=x^2 and b=sqrt(2) then we find:

(x^4-sqrt(6)x^2+2)(x^4+sqrt(6)x^2+2) = x^8-2x^4+4

Putting k=sqrt(2+sqrt(3)), a=x and b=root(4)(2) we find:

(x^2-sqrt(2+sqrt(3))root(4)(2)x+sqrt(2))(x^2+sqrt(2+sqrt(3))root(4)(2)x+sqrt(2))

=x^4-sqrt(6)x^2+2

Putting k=sqrt(2-sqrt(3)), a=x and b=root(4)(2) we find:

(x^2-sqrt(2-sqrt(3))root(4)(2)x+sqrt(2))(x^2+sqrt(2-sqrt(3))root(4)(2)x+sqrt(2))

=x^4+sqrt(6)x^2+2

Putting this all together, we find:

x^12+8 = (x^2-root(4)(8)x+sqrt(2))(x^2+root(4)(8)x+sqrt(2))(x^2-sqrt(2+sqrt(3))root(4)(2)x+sqrt(2))(x^2+sqrt(2+sqrt(3))root(4)(2)x+sqrt(2))(x^2-sqrt(2-sqrt(3))root(4)(2)x+sqrt(2))(x^2+sqrt(2-sqrt(3))root(4)(2)x+sqrt(2))