How do you factor x^6+10x^3+25?

1 Answer
Sep 2, 2016

x^6+10x^3+25 = (x^3+5)^2 = (x+root(3)(5))^2(x^2-(root(3)(5))x+root(3)(25))^2

Explanation:

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)

Use this with a=x and b=root(3)(5) as follows:

x^6+10x^3+25 = (x^3)^2+2(5)(x^3)+(5)^2

color(white)(x^6+10x^3+25) = (x^3+5)^2

color(white)(x^6+10x^3+25) = (x^3+(root(3)(5))^3)^2

color(white)(x^6+10x^3+25) = ((x+root(3)(5))(x^2-x(root(3)(5))+(root(3)(5))^2))^2

color(white)(x^6+10x^3+25) = (x+root(3)(5))^2(x^2-(root(3)(5))x+root(3)(25))^2