How do you factor x^6y^3 + y^9?
1 Answer
Feb 25, 2017
Explanation:
The sum of cubes identity can be written:
a^3+b^3 = (a+b)(a^2-ab+b^2)
So we find:
x^6y^3+y^9 = y^3(x^6+y^6)
color(white)(x^6y^3+y^9) = y^3((x^2)^3+(y^2)^3)
color(white)(x^6y^3+y^9) = y^3(x^2+y^2)(x^4-x^2y^2+y^4)
Then note that:
(x^2-axy+y^2)(x^2+axy+y^2) = x^4+(2-a^2)x^2y^2+y^4
So putting
x^4-x^2y^2+y^4 = (x^2-sqrt(3)xy+y^2)(x^2+sqrt(3)xy+y^2)
Putting it all together:
x^6y^3+y^9 = y^3(x^2+y^2)(x^2-sqrt(3)xy+y^2)(x^2+sqrt(3)xy+y^2)