How do you factor x^8-256x8256?

1 Answer
Mar 27, 2015

Remember the special products:
(A-B)(A+B)=A^2-B^2(AB)(A+B)=A2B2 and vice versa.

x^8-256=(x^4)^2-(16)^2=(x^4-16)(x^4+16)x8256=(x4)2(16)2=(x416)(x4+16)

You can't factor the second term any further, but the first term can be factored according to the same rule:
x^4-16=(x^2)^2-(4)^2=(x^2-4)(x^2+4)x416=(x2)2(4)2=(x24)(x2+4)

And again:
x^2-4=(x-2)(x+2)x24=(x2)(x+2)

If we put all of this together we get:

x^8-256=(x-2)(x+2)(x^2+4)(x^4+16)x8256=(x2)(x+2)(x2+4)(x4+16)