How do you factor x^9+1x9+1?

1 Answer
Aug 9, 2016

x^9+1 = (x+1)(x^2 - 2 cos((pi)/9) x + 1)(x^2 - 2 cos((3pi)/9) x + 1)(x^2 - 2 cos((5pi)/9) x + 1)(x^2 - 2 cos((7pi)/9) x + 1)x9+1=(x+1)(x22cos(π9)x+1)(x22cos(3π9)x+1)(x22cos(5π9)x+1)(x22cos(7π9)x+1)

Explanation:

The easiest way to do this is probably using Complex arithmetic and de Moivre's formula:

(cos theta + i sin theta)^n = cos n theta + i sin n theta(cosθ+isinθ)n=cosnθ+isinnθ

We find that the nine 99th roots of -11 are:

cos ((k pi)/9) + i sin ((k pi)/9)cos(kπ9)+isin(kπ9)

for k = +-1, +-3, +-5, +-7, 9k=±1,±3,±5,±7,9

In order to find factors with Real coefficients, we can pair up the Complex conjugate pairs like this:

(x - cos ((k pi)/9) - i sin((k pi)/9))(x - cos ((-k pi)/9) - i sin((-k pi)/9))(xcos(kπ9)isin(kπ9))(xcos(kπ9)isin(kπ9))

=(x - cos ((k pi)/9) - i sin((k pi)/9))(x - cos ((k pi)/9) + i sin((k pi)/9))=(xcos(kπ9)isin(kπ9))(xcos(kπ9)+isin(kπ9))

=(x - cos ((k pi)/9))^2 - (i sin((k pi)/9))^2=(xcos(kπ9))2(isin(kπ9))2

=x^2 - 2 cos((k pi)/9) x + 1=x22cos(kπ9)x+1

for k = 1, 3, 5, 7k=1,3,5,7

Hence:

x^9+1 = (x+1)(x^2 - 2 cos((pi)/9) x + 1)(x^2 - 2 cos((3pi)/9) x + 1)(x^2 - 2 cos((5pi)/9) x + 1)(x^2 - 2 cos((7pi)/9) x + 1)x9+1=(x+1)(x22cos(π9)x+1)(x22cos(3π9)x+1)(x22cos(5π9)x+1)(x22cos(7π9)x+1)