How do you factor z^6-64p^6?

1 Answer
Mar 10, 2016

z^6-64p^6=(z-2p)(z^2+2pz+4p^2)(z+2p)(z^2-2pz+4p^2)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)

The difference of cubes identity can be written:

a^3-b^3 = (a-b)(a^2+ab+b^2)

The sum of cubes identity can be written:

a^3+b^3 = (a+b)(a^2-ab+b^2)

Hence:

z^6-64p^6

=(z^3)^2-(8p^3)^2

=(z^3-8p^3)(z^3+8p^3)

=(z^3-(2p)^3)(z^3+(2p)^3)

=(z-2p)(z^2+2pz+4p^2)(z+2p)(z^2-2pz+4p^2)