How do you find all (cos2x)/(sin3x-sinx) in the interval [0,2pi)?

1 Answer
Jul 28, 2018

Graph reads y values, x in [ 0, 2pi ]
sans indeterminate holes at x = pi/4, 3/4pi, 5/4pi and 7/4pi , and
asymptotic x = 0, pi and 2pi

Explanation:

y = (cos 2x)/(sin 3x - sin x)

= (cos 2x)/(2 cos(1/2(3x + x ))sin(1/2( 3x - x )))

=1/2 (cos 2x)/(cos 2x)(1/sinx),

= 1/2 csc x, cos 2x ne 0
rArr 2x ne (2k + 1 ) (pi/2), k = 0, +-1, +-2, +-3, ...

x ne (2k + 1 )pi/4 and asymptotic x ne kpi

Note that

y = 1/2 csc x notin 1/2 ( - 1, 1 ) = ( - 1/2, 1/2 )

The graph reads y. sans y at duly marked x =0, pi/4, 3/4pi,

pi, 5/4pi, 7/4pi, 2pi. .
graph{(2y sin x +1)(x-pi/4+0.001y)(x+0.001y)(x-pi+0.001y) (x-3pi/4+0.001y)(x-5pi/4+0.001y)(x-2pi+0.001y)(x-7pi/4+0.001y)= 0[-0.2 8 -2 2]}