How do you find all sin^2 3x-sin^2x=0 in the interval [0,2pi)?

2 Answers
Jul 15, 2017

The solutions are S={0,1/4pi,1/2pi,3/4pi,pi,5/4pi,3/2pi,7/4pi}

Explanation:

We need

sin^2x+cos^2x=1

sin2x=2sinxcox

cos2x=1-2sin^2x

We start by calculating sin3x

sin3x=sin(2x+x)

=sin2xcosx+cos2xsinx

=2sinxcos^2x+sinx(1-2sin^2x)

=2sinx(1-sin^2x)+sinx-2sin^3x

=2sinx-2sin^3x+sinx-2sin^3x

=3sinx-4sin^3x

Therefore,

sin^2(3x)-sin^2x=0

(3sinx-4sin^3x)^2-sin^2x=0

9sin^2x-24sin^4x+16sin^6x-sin^2x=0

16sin^6x-24sin^4x+8sin^2x=0

8sin^2x(2sin^4x-3sin^2x+1)=0

8sin^2x(2sin^2x-1)(sin^2x-1)=0

8sin^2x(sqrt2sinx+1)(sqrt2sinx-1)(sinx+1)(sinx-1)=0

So,

sin^2x=0, =>, x=2pin, and x=pi+2pin

sqrt2sinx+1=0, =>, sinx=-1/sqrt2, =>, x=5/4pi+2pin, and x=7/4pi+2pin

sqrt2sinx-1=0, =>, sinx=1/sqrt2, =>, x=1/4pi+2pin and x=3/4pi+2pin

sinx+1=0, =>, sinx=-1, =>, x=3/2pi+2pin

sinx-1=0, =>, sinx=1, =>, x=1/2pi+2pin

Jul 16, 2017

0; pi/4; pi/2; pi

Explanation:

f(x) = sin^2 3x - sin^2 x = (sin 3x - sin x)(sin 3x + sin x)
Apply the 2 trig identities:
sin a - sin b = 2cos((a + b)/2)sin ((a - b)/2)
sin a + sin b = 2sin ((a + b)/2)cos ((a - b)/2)
In this case -->
f(x) = (2cos 2x.sin x)(2sin 2x.cos x) = 0
f(x) = (2sin 2x.cos 2x)(2sin x.cos x) = sin 4x.sin 2x = 0
Either factor must be zero.

a. sin 2x = 0 --> 2x = 0; 2x = pi, and 2x = 2pi -->
x = 0; x = pi/2; and x = pi
b. sin 4x = 0 --> 4x = 0; 4x = pi; and 4x = 2pi -->
x = 0; x = pi/4; and x = pi/2
Answers in interval (0, 2pi):
0; pi/4; pi/2; pi
Check by calculator:
x = pi/4 --> sin x = 1/sqrt2 --> sin^2 x = 1/2 -->
sin 3x = sin ((3pi)/4) = sqrt2/2 --> sin^2 ((3pi)/4) = 2/4 = 1/2.
sin^2 3x - sin^2 x = 1/2 - 1/2 = 0 Proved.