How do you find cos67.5cos67.5 using the half-angle identity?
2 Answers
Explanation:
The Half-Angle Identity is
Taking,
I got
Since
cos^2(x) = (1 + cos(2x))/2
cos^2(x/2) = (1 + cosx)/2
:. cos(x/2) = pmsqrt((1 + cosx)/2)
Since
cos(135^@/2) = +sqrt((1 + cos(135^@))/2)
= sqrt((1 + cos((3pi)/4))/2)
= sqrt((1 - sqrt2/2)/2)
= sqrt((2/2 - sqrt2/2)/2) = sqrt(((2 - sqrt2)/2)/2)
= sqrt((2 - sqrt2)/4)
= color(blue)(sqrt(2 - sqrt2)/2 ~~ 0.3827)