How do you find int (x-1)/sqrt(x^2-2x)∫x−1√x2−2x?
1 Answer
Nov 10, 2016
Explanation:
I=int(x-1)/sqrt(x^2-2x)dx=1/2int(2x-2)/sqrt(x^2-2x)dxI=∫x−1√x2−2xdx=12∫2x−2√x2−2xdx
Substituting
I=1/2int(du)/sqrtu=1/2intu^(-1/2)duI=12∫du√u=12∫u−12du
With the rule
I=1/2u^(1/2)/(1/2)+C=u^(1/2)+C=sqrtu+C=sqrt(x^2-2x)+CI=12u1212+C=u12+C=√u+C=√x2−2x+C