How do you find lim (3+2sqrtu)/(4-sqrtu) as u->oo?
1 Answer
Mar 15, 2017
lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = -2
Explanation:
We can manipulate the limit as follows;
lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) * (1/sqrt(u))/(1/sqrt(u))
" " = lim_(u rarr oo)(3/sqrt(u)+2)/(4/sqrt(u)-1)
" " = (lim_(u rarr oo)(3/sqrt(u)+2)) / (lim_(u rarr oo)(4/sqrt(u)-1))
And as
lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = (0+2) / (0-1)
" " = 2/(-1)
" " = -2