How do you find lim (3+2sqrtu)/(4-sqrtu) as u->oo?

1 Answer
Mar 15, 2017

lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = -2

Explanation:

We can manipulate the limit as follows;

lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) * (1/sqrt(u))/(1/sqrt(u))
" " = lim_(u rarr oo)(3/sqrt(u)+2)/(4/sqrt(u)-1)

" " = (lim_(u rarr oo)(3/sqrt(u)+2)) / (lim_(u rarr oo)(4/sqrt(u)-1))

And as u rarr oo => 1/sqrt(u) rarr 0 ; thus;

lim_(u rarr oo)(3+2sqrt(u))/(4-sqrt(u)) = (0+2) / (0-1)
" " = 2/(-1)
" " = -2