How do you find lim (5x+6)/(x^2-4) as x->oo?

1 Answer
Jan 26, 2017

The answer is =0^- and 0^+

Explanation:

lim_(x->-oo)(5x+6)/(x^2-4)=lim_(x->-oo)(x(5+6/x))/(x^2(1-4/x^2))

lim_(x->-oo)6/x=0

lim_(x->-oo)4/x^2=0

lim_(x->-oo)(x(5+6/x))/(x^2(1-4/x^2))=lim_(x->-oo)5/x=0^-

lim_(x->+oo)(5x+6)/(x^2-4)=lim_(x->+oo)(x(5+6/x))/(x^2(1-4/x^2))

lim_(x->+oo)(x(5+6/x))/(x^2(1-4/x^2))=lim_(x->+oo)5/x=0^+