How do you find lim root3(t^3+1)-t as t->oo?
1 Answer
Dec 25, 2016
Explanation:
Use the difference of cubes identity:
a^3-b^3=(a-b)(a^2+ab+b^2)
with
root(3)(t^3+1)-t = ((root(3)(t^3+1))^3-t^3)/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)
color(white)(root(3)(t^3+1)-t) = ((t^3+1)-t^3)/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)
color(white)(root(3)(t^3+1)-t) = 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)
Note that for positive values of
So, when
0 < 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) < 1/t^2
So:
0 <= lim_(t->oo) 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) <= lim_(t->oo) 1/t^2 = 0
So:
lim_(t->oo) (root(3)(t^3+1)-t) = lim_(t->oo) 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) = 0