How do you find lim root3(t^3+1)-t as t->oo?

1 Answer
Dec 25, 2016

lim_(t->oo) (root(3)(t^3+1)-t) = 0

Explanation:

Use the difference of cubes identity:

a^3-b^3=(a-b)(a^2+ab+b^2)

with a=root(3)(t^3+1) and b=t as follows:

root(3)(t^3+1)-t = ((root(3)(t^3+1))^3-t^3)/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)

color(white)(root(3)(t^3+1)-t) = ((t^3+1)-t^3)/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)

color(white)(root(3)(t^3+1)-t) = 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2)

Note that for positive values of t, all terms in the denominator are positive so:

So, when t > 0:

0 < 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) < 1/t^2

So:

0 <= lim_(t->oo) 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) <= lim_(t->oo) 1/t^2 = 0

So:

lim_(t->oo) (root(3)(t^3+1)-t) = lim_(t->oo) 1/((root(3)(t^3+1))^2+t(root(3)(t^3+1))+t^2) = 0