How do you find lim root3(t+4)-root3t as t->oo?

1 Answer
Mar 1, 2017

0

Explanation:

root3(t+4)-root3t = root3(t)(root3(1+4/t)-1)

but

root3(1+4/t) = 1+1/3(4/t)+(1/3(1/3-1))/(2!)(4/t)^2+cdots

and

root3(t)(root3(1+4/t)-1) = root3(t)(-1/3(4/t)-(1/3(1/3-1))/(2!)(4/t)^2-cdots) =

=1/t^(2/3)(-4/3+f(1/t)) so

lim_(t->oo)root3(t+4)-root3t = lim_(t->oo)1/t^(2/3)(-4/3+f(1/t))=0