How do you find lim sqrt(2x+3)-sqrtx as x->oo?

1 Answer
Jan 18, 2018

lim_(xrarr+oo)(sqrt(2x+3)-sqrtx)=+oo

Explanation:

lim_(xrarr+oo)(sqrt(2x+3)-sqrtx)=?

f(x)=sqrt(2x+3)-sqrtx=

((sqrt(2x+3)-sqrtx)(sqrt(2x+3)+sqrtx))/(sqrt(2x+3)+sqrtx) =

(sqrt(2x+3)^2-sqrtx^2)/(sqrt(2x+3)+sqrtx) =

(2x+3-x)/(sqrt(2x+3)+sqrtx) =

(x+3)/(sqrt(2x+3)+sqrtx)

As a result,

lim_(xrarr+oo)(sqrt(2x+3)-sqrtx)=lim_(xrarr+oo)(x+3)/(sqrt(2x+3)+sqrtx) =

lim_(xrarr+oo)(x+3)/(sqrt(x^2(2/x+3/x^2))+sqrtx) =

lim_(xrarr+oo)(x+3)/(|x|sqrt(2/x+3/x^2)+|x|sqrt(1/x)) =

x->+oo
x>0

lim_(xrarr+oo)(x+3)/(xsqrt(2/x+3/x^2)+xsqrt(1/x)) =

lim_(xrarr+oo)(cancel(x)(1+3/x))/(cancel(x)(sqrt(2/x+3/x^2)+sqrt(1/x)) =

lim_(xrarr+oo)(1+3/x)/(sqrt(2/x+3/x^2)+sqrt(1/x))=^((1/0^+) +oo