lim_(xrarr+oo)(sqrt(2x+3)-sqrtx)=?
f(x)=sqrt(2x+3)-sqrtx=
((sqrt(2x+3)-sqrtx)(sqrt(2x+3)+sqrtx))/(sqrt(2x+3)+sqrtx) =
(sqrt(2x+3)^2-sqrtx^2)/(sqrt(2x+3)+sqrtx) =
(2x+3-x)/(sqrt(2x+3)+sqrtx) =
(x+3)/(sqrt(2x+3)+sqrtx)
As a result,
lim_(xrarr+oo)(sqrt(2x+3)-sqrtx)=lim_(xrarr+oo)(x+3)/(sqrt(2x+3)+sqrtx) =
lim_(xrarr+oo)(x+3)/(sqrt(x^2(2/x+3/x^2))+sqrtx) =
lim_(xrarr+oo)(x+3)/(|x|sqrt(2/x+3/x^2)+|x|sqrt(1/x)) =
x->+oo
x>0
lim_(xrarr+oo)(x+3)/(xsqrt(2/x+3/x^2)+xsqrt(1/x)) =
lim_(xrarr+oo)(cancel(x)(1+3/x))/(cancel(x)(sqrt(2/x+3/x^2)+sqrt(1/x)) =
lim_(xrarr+oo)(1+3/x)/(sqrt(2/x+3/x^2)+sqrt(1/x))=^((1/0^+) +oo