How do you find lim sqrt(3x+1)-2sqrtx as x->oo?

1 Answer
Dec 12, 2017

lim_(x->oo)(sqrt(3x+1)-2sqrt(x))=-oo

Explanation:

The question asks to find lim_(x->oo)(sqrt(3x+1)-2sqrt(x)).

Multiply by (sqrt(3x+1)+2sqrt(x))/(sqrt(3x+1)+2sqrt(x)) to get
=lim_(x->oo)((sqrt(3x+1)-2sqrt(x))*(sqrt(3x+1)+2sqrt(x))/(sqrt(3x+1)+2sqrt(x)))
=lim_(x->oo)((3x+1-4x)/(sqrt(3x+1)+2sqrt(x)))
=lim_(x->oo)((1-x)/(sqrt(3x+1)+2sqrt(x)))
=lim_(x->oo)((1-x)/(sqrt(x)(sqrt(3+1/x)+2)))
=lim_(x->oo)((1/sqrt(x)-sqrt(x))/(sqrt(3+1/x)+2))
=(lim_(x->oo)(1/sqrt(x)-sqrt(x)))/(lim_(x->oo)(sqrt(3+1/x)+2))

The numerator evaluates to -oo while the denominator is a finite number.

Thus, the answer is -oo.

This can be seen clearly with a graph:
graph{sqrt(3x+1)-2sqrt(x) [-1, 100, -5, 2]}