How do you find lim sqrt(u^2-3u+2)-sqrt(u^2+1) as u->oo?

1 Answer
Apr 12, 2017

-3/2

Explanation:

Note that:

sqrt(u^2-3u+2)-sqrt(u^2+1)=(sqrt(u^2-3u+2)-sqrt(u^2+1))*(sqrt(u^2-3u+2)+sqrt(u^2+1))/(sqrt(u^2-3u+2)+sqrt(u^2+1))

=((u^2-3u+2)-(u^2+1))/(sqrt(u^2-3u+2)+sqrt(u^2+1))

=(-3u+1)/(sqrt(u^2-3u+2)+sqrt(u^2+1))

Factoring out the terms with the largest degree:

=(u(-3+1/u))/(sqrt(u^2(1-3/u+2/u^2))+sqrt(u^2(1+1/u^2)))

=(u(-3+1/u))/(absu(sqrt(1-3/u+2/u^2)+sqrt(1+1/u^2)))

Also note that:

absu={(u,",",u>0),(-u,",",u<0):}

Since we're concerned with positive infinity, we say that absu=u in this case. The u in the numerator and denominator then cancel.

=(-3+1/u)/(sqrt(1-3/u+2/u^2)+sqrt(1+1/u^2))

So then:

lim_(urarroo) sqrt(u^2-3u+2)-sqrt(u^2+1)=lim_(urarroo)(-3+1/u)/(sqrt(1-3/u+2/u^2)+sqrt(1+1/u^2))

=(-3+0)/(sqrt(1-0+0)+sqrt(1+0))

=-3/2