How do you find lim sqrt(x+2)-sqrtx as x->oo?

1 Answer
Jan 22, 2017

lim_(xrarroo)(sqrt(x+2)-sqrtx) has indeterminate initial form oo-oo. See below.

Explanation:

(sqrt(x+2)-sqrtx) = ((sqrt(x+2)-sqrtx))/1 ((sqrt(x+2)+sqrtx))/((sqrt(x+2)+sqrtx))

= (x+2-x)/(sqrt(x+2)+sqrtx)

= 2/(sqrt(x+2)+sqrtx)

As xrarroo, the denominator sqrt(x+2)+sqrtx rarr oo

Therefore,

lim_(xrarroo) (sqrt(x+2)-sqrtx) =lim_(xrarroo) 2/(sqrt(x+2)+sqrtx)

= 0