How do you find lim sqrtt(sqrt(t+2)-sqrt(t+1)) as t->oo? Calculus Limits Limits at Infinity and Horizontal Asymptotes 1 Answer Cesareo R. Feb 13, 2017 1/2 Explanation: sqrtt(sqrt(t+2)-sqrt(t+1))=sqrtt((t+2-(t+1)))/(sqrt(t+2)+sqrt(t+1))= (sqrtt/sqrtt) 1/((sqrt(1+2/t)+sqrt(1-1/t)))=1/(sqrt(1+2/t)+sqrt(1+1/t)) so lim_(t->oo)sqrtt(sqrt(t+2)-sqrt(t+1))=lim_(t->oo)1/(sqrt(1+2/t)+sqrt(1+1/t))=1/2 Answer link Related questions What kind of functions have horizontal asymptotes? How do you find horizontal asymptotes for f(x) = arctan(x) ? How do you find the horizontal asymptote of a curve? How do you find the horizontal asymptote of the graph of y=(-2x^6+5x+8)/(8x^6+6x+5) ? How do you find the horizontal asymptote of the graph of y=(-4x^6+6x+3)/(8x^6+9x+3) ? How do you find the horizontal asymptote of the graph of y=3x^6-7x+10/8x^5+9x+10? How do you find the horizontal asymptote of the graph of y=6x^2 ? How can i find horizontal asymptote? How do you find horizontal asymptotes using limits? What are all horizontal asymptotes of the graph y=(5+2^x)/(1-2^x) ? See all questions in Limits at Infinity and Horizontal Asymptotes Impact of this question 1558 views around the world You can reuse this answer Creative Commons License