How do you find lim t(sqrt(t+1)-sqrtt) as t->oo?

2 Answers
Jan 7, 2018

lim_(t->oo) t(sqrt(t+1)-sqrt(t)) = oo

Explanation:

lim_(t->oo) t(sqrt(t+1)-sqrt(t))

=lim_(t->oo) (t(sqrt(t+1)-sqrt(t))(sqrt(t+1)+sqrt(t)))/(sqrt(t+1)+sqrt(t))

=lim_(t->oo) (t((t+1)-t))/(sqrt(t+1)+sqrt(t))

=lim_(t->oo) t/(sqrt(t+1)+sqrt(t))

=lim_(t->oo) sqrt(t) * sqrt(t)/(sqrt(t+1)+sqrt(t))

=lim_(t->oo) sqrt(t) * 1/(sqrt(1+1/t)+1)

=lim_(t->oo) 1/2sqrt(t)

=oo

Jan 7, 2018

+oo

Explanation:

I'll replace t with x

lim_(xrarr+oo)x*(sqrt(x+1)-sqrtx) =

lim_(xrarr+oo)x*((sqrt(x+1)-sqrtx)(sqrt(x+1)+sqrtx))/(sqrt(x+1)+sqrtx) =

lim_(xrarr+oo)x*(sqrt(x+1)^2-sqrtx^2)/(sqrt(x+1)+sqrtx) =

lim_(xrarr+oo)x*(cancel(x)+1-cancel(x))/(sqrt(x+1)+sqrtx) =

lim_(xrarr+oo)x/(sqrt(x+1)+sqrtx) =

lim_(xrarr+oo)x/(sqrt(x^2(1/x+1/x^2))+sqrt(x^2*(1/x))) =

lim_(xrarr+oo)x/(|x|sqrt(1/x+1/x^2)+|x|sqrt(1/x))

x->+oo , x>0

= lim_(xrarr+oo)x/(xsqrt(1/x+1/x^2)+xsqrt(1/x)) =

lim_(xrarr+oo)cancel(x)/(cancel(x)(sqrt(1/x+1/x^2)+sqrt(1/x)) =

lim_(xrarr+oo)1/(sqrt(1/x+1/x^2)+sqrt(1/x)) = +oo

because lim_(xrarr+oo)x=+oo so lim_(xrarr+oo)1/x=0

and lim_(xrarr+oo)sqrt(1/x)=0