How do you find sin (x/2), given cos x = -5/8, with pi/2 < x <pi?

1 Answer
May 18, 2015

Recall the formula for a cosine of a sum of two angles:
cos(alpha+beta)=cos(alpha)*cos(beta)-sin(alpha)*sin(beta)

Use it for alpha=beta=x/2:
cos(x/2+x/2)=cos^2(x/2)-sin^2(x/2)

Substitute x/2+x/2=x
Use the identity sin^2(gamma)+cos^2(gamma)=1 for gamma=x/2
The result is:
cos(x)=1-2sin^2(x/2)

Now we can use the value of cos(x)=-5/8.
1-2sin^2(x/2)=-5/8
sin^2(x/2)=(1+5/8)/2=13/16
sin(x/2)=+-sqrt(13)/4

If pi/2 < x < pi, pi/4 < x/2 < pi/2. For these angles function sine is positive.
Therefore, sin(x/2)=sqrt(13)/4.