How do you find Tan 22.5 using the half angle formula?

1 Answer

Find tan (22.5)

Answer: -1 + sqrt2

Explanation:

Call tan (22.5) = tan t --> tan 2t = tan 45 = 1

Use trig identity: tan 2t = (2tan t)/(1 - tan^2 t) (1)

tan 2t = 1 = (2tan t)/(1 - tan^2 t) -->
--> tan^2 t + 2(tan t) - 1 = 0
Solve this quadratic equation for tan t.

D = d^2 = b^2 - 4ac = 4 + 4 = 8 --> d = +- 2sqrt2
There are 2 real roots:
tan t = -b/2a +- d/2a = -2/1 + 2sqrt2/2 = - 1 +- sqrt2
Answer:
tan t = tan (22.5) = - 1 +- sqrt2
Since tan 22.5 is positive, then take the positive answer:
tan (22.5) = - 1 + sqrt2