How do you find tan (x+y) if cot x = 6/5 and sec y = 3/2?

1 Answer
May 15, 2015

To find tan (x + y), use the trig identity:
tan (a + b) = (tan a + tan b)/(1 - tan a.tan b) (1)

First, find tan x and tan y.

tan x = 1/cot x = 5/6

sec y = 1/cos y = 3/2 -> cos y = 2/3

sin^2 y = 1 - cos^2 y = 1 - 4/9 = 5/9 -> sin x = sqr5/3

tan y = sin y/cos y = ((sqr5)/3):(2/3) = (sqr5)/2
Replace tan x and tan y into identity (1)

f(x,y) = [(5/6 + (sqr5)/2]/[1 - 5sqr5/12)]=

=(10 + 6sqr5)/(12 - 5sqr5)