How do you find the antiderivative of ((2x)e^(3x))((2x)e3x)?

1 Answer
Aug 3, 2016

1/9*(3x-1)*e^(3x)+C19(3x1)e3x+C.

Explanation:

Let, I=int2xe^(3x)dx rArr I=2intxe^(3x)dxI=2xe3xdxI=2xe3xdx.

To find II, we will use the following Rule of Integration by Parts :

intuvdx=uintvdx-int{(du)/dxintvdx}dxuvdx=uvdx{dudxvdx}dx.

We take, u=x, so, (du)/dx=1, &, v=e^(3x), so, intvdx=1/3e^(3x)u=x,so,dudx=1,&,v=e3x,so,vdx=13e3x. So,

I=x*1/3e^(3x)-int{1*1/3e^(3x)}dxI=x13e3x{113e3x}dx

=x/3e^(3x)-1/3inte^(3x)dx=x3e3x13e3xdx

=x/3e^(3x)-1/3*1/3e^(3x)=x3e3x1313e3x

:. I = 1/9*(3x-1)*e^(3x)+C.