How do you find the antiderivative of (e^(2x))/(1+e^(2x))?

1 Answer
Feb 22, 2017

int \ e^(2x)/(1+e^(2x)) \ dx = 1/2ln|1+e^(2x)| + c

Explanation:

We want to find int \ e^(2x)/(1+e^(2x)) \ dx

A trivial substitution can be used to simplify the denominator; Let:

u = 1+e^(2x)

Then (du)/dx = 2e^(2x) => 1/2 (du)/dx = e^(2x)

If we substitute this into the integral we get;

int \ e^(2x)/(1+e^(2x)) \ dx = int \ (1/2)/(u) \ du
" " = 1/2ln|u| + c

And if we undo the substitution we get:

int \ e^(2x)/(1+e^(2x)) \ dx = 1/2ln|1+e^(2x)| + c