How do you find the antiderivative of (e^(2x))/(1+e^(2x))?
1 Answer
Feb 22, 2017
int \ e^(2x)/(1+e^(2x)) \ dx = 1/2ln|1+e^(2x)| + c
Explanation:
We want to find
A trivial substitution can be used to simplify the denominator; Let:
u = 1+e^(2x)
Then
If we substitute this into the integral we get;
int \ e^(2x)/(1+e^(2x)) \ dx = int \ (1/2)/(u) \ du
" " = 1/2ln|u| + c
And if we undo the substitution we get:
int \ e^(2x)/(1+e^(2x)) \ dx = 1/2ln|1+e^(2x)| + c