How do you find the antiderivative of e^(2x) / (3+e^(2x))e2x3+e2x?

1 Answer
Jun 21, 2016

int e^(2x) / (3+e^(2x)) \ dx = ln sqrt{ 3 + e^{2x)) + C

Explanation:

easiest way always is to recognise the patterns

generalisation d/(dx) ln (f(x)) = ( f'(x) ) / f(x)

so if we consider d/(dx) ln (3 + e^{2x}) = 1/(3 + e^{2x}) * 2 e^{2x} then we're pretty much done

because d/(dx) ln (3 + e^{2x}) = ( 2 e^{2x})/(3 + e^{2x}) then we actually want 1/2 * d/(dx) ln (3 + e^{2x}) = d/(dx) [ 1/2 * ln (3 + e^{2x})] moving the constant inside the derivative

= d/(dx) [ ln sqrt{ 3 + e^{2x)) \ ]

thusly

int e^(2x) / (3+e^(2x)) \ dx = ln sqrt{ 3 + e^{2x)) + C

you can plough through a whole series of subs but seeing the pattern is a real life saver.