How do you find the antiderivative of [e^(2x)/(4+e^(4x))][e2x4+e4x]?

1 Answer
Aug 3, 2016

1/4arctan(e^(2x)/2)+C14arctan(e2x2)+C.

Explanation:

Let, I = inte^(2x)/(4+e^(4x))dxI=e2x4+e4xdx.

We take subst. e^(2x)=t rArr e^(2x)*2dx=dte2x=te2x2dx=dt.

Therefore, I=1/2int(2*e^(2x)*dx)/{4+(e^(2x))^2}I=122e2xdx4+(e2x)2,

=1/2intdt/(4+t^2) = 1/2*1/2*arctan(t/2)=12dt4+t2=1212arctan(t2).

Hence, I=1/4arctan(e^(2x)/2)+CI=14arctan(e2x2)+C.