How do you find the antiderivative of e^(2x) dxe2xdx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Shwetank Mauria Jun 30, 2016 inte^(2x)dx=1/2e^(2x)+c∫e2xdx=12e2x+c Explanation: Let u=2xu=2x, hence du=2dxdu=2dx Hence inte^(2x)dx=inte^u*(du)/2∫e2xdx=∫eu⋅du2 = 1/2e^(u)+c12eu+c = 1/2e^(2x)+c12e2x+c Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 10487 views around the world You can reuse this answer Creative Commons License