This kind of integral can be easily handled by inmersion in the complex domain. Solving instead
int e^(2x)cos(3x)dx + i int e^(2x)*sin(3x) dx =int e^(2x) e^(i3x)dx∫e2xcos(3x)dx+i∫e2x⋅sin(3x)dx=∫e2xei3xdx
(We are using de Moivre's identity e^(i phi) = cos(phi)+i sin(phi))eiϕ=cos(ϕ)+isin(ϕ))
but
int e^(2x) e^(i3x)dx = int e^(2x+i3x)dx = int e^((2+3i)x)dx∫e2xei3xdx=∫e2x+i3xdx=∫e(2+3i)xdx
which gives
int e^((2+3i)x)dx = e^((2+3i)x)/(2+3i)=(e^((2+3i)x)(2-3i))/13 = (2-3i)/13 e^(2x) e^(i3x)=(2-3i)/13e^(2x)(cos(3x)+i sin(3x))∫e(2+3i)xdx=e(2+3i)x2+3i=e(2+3i)x(2−3i)13=2−3i13e2xei3x=2−3i13e2x(cos(3x)+isin(3x)) with imaginary part given by
e^(2x)/13(2sin(3x)-3cos(3x))e2x13(2sin(3x)−3cos(3x))