How do you find the antiderivative of e^(2x)*sin(3x) dxe2xsin(3x)dx?

1 Answer
Aug 27, 2016

e^(2x)/13(2sin(3x)-3cos(3x))+Ce2x13(2sin(3x)3cos(3x))+C

Explanation:

This kind of integral can be easily handled by inmersion in the complex domain. Solving instead

int e^(2x)cos(3x)dx + i int e^(2x)*sin(3x) dx =int e^(2x) e^(i3x)dxe2xcos(3x)dx+ie2xsin(3x)dx=e2xei3xdx

(We are using de Moivre's identity e^(i phi) = cos(phi)+i sin(phi))eiϕ=cos(ϕ)+isin(ϕ))

but

int e^(2x) e^(i3x)dx = int e^(2x+i3x)dx = int e^((2+3i)x)dxe2xei3xdx=e2x+i3xdx=e(2+3i)xdx

which gives

int e^((2+3i)x)dx = e^((2+3i)x)/(2+3i)=(e^((2+3i)x)(2-3i))/13 = (2-3i)/13 e^(2x) e^(i3x)=(2-3i)/13e^(2x)(cos(3x)+i sin(3x))e(2+3i)xdx=e(2+3i)x2+3i=e(2+3i)x(23i)13=23i13e2xei3x=23i13e2x(cos(3x)+isin(3x)) with imaginary part given by

e^(2x)/13(2sin(3x)-3cos(3x))e2x13(2sin(3x)3cos(3x))