How do you find the antiderivative of e^(2x) * sin(4x)dx?

1 Answer
Apr 8, 2018

I=e^(2x)/10(sin4x-2cos4x)+c
OR
I=e^(2x)/sqrt(20)sin(4x-tan^-1 2)+c

Explanation:

Here,

I=inte^(2x)sin4xdx

We know that,

color(red)((1)inte^(ax) sinbxdx=e^(ax)/(a^2+b^2)(asinbx- bcosbx)+c

Comparing we get, a=2 and b=4

So,

I=e^(2x)/(2^2+4^2)(2sin4x-4cos4x)+c

I=e^(2x)/20(2sin4x-4cos4x)+c

I=e^(2x)/10(sin4x-2cos4x)+c

OR

We also know that,

color(red)((2)inte^(ax)sinbxdx=e^(ax)/sqrt(a^2+b^2)sin(bx- theta)+c,

where, theta=tan^-1(b/a)

So,

I=e^(2x)/sqrt(2^2+4^2)sin(4x-theta)+c,

where,theta=tan^-1(4/2)=tan^-1(2)

Hence,

I=e^(2x)/sqrt(20)sin(4x-tan^-1 2)+c