How do you find the antiderivative of e^(2x)*sin(e^x)dx?

1 Answer
Jan 17, 2017

inte^(2x)sin(e^x)dx=-e^xcos(e^x)+sin(e^x)+C

Explanation:

I=inte^(2x)sin(e^x)dx

Let t=e^x. This implies that dt=e^xdx. Before substituting, note that e^(2x)=e^x(e^x).

I=inte^xsin(e^x)(e^xdx)=inttsin(t)dt

To do this, use integration by parts. This takes the form intudv=uv-intvdu. Let:

{(u=t" "=>" "du=dt),(dv=sin(t)dt" "=>" "v=-cos(t)):}

Then:

I=uv-intvdu=-tcos(t)-int(-cos(t))dt

I=-tcos(t)+intcos(t)dt=-tcos(t)+sin(t)

Returning to the original variable using t=e^x:

I=-e^xcos(e^x)+sin(e^x)+C