How do you find the antiderivative of e^(2x)*sin(e^x)dx?
1 Answer
Jan 17, 2017
Explanation:
I=inte^(2x)sin(e^x)dx
Let
I=inte^xsin(e^x)(e^xdx)=inttsin(t)dt
To do this, use integration by parts. This takes the form
{(u=t" "=>" "du=dt),(dv=sin(t)dt" "=>" "v=-cos(t)):}
Then:
I=uv-intvdu=-tcos(t)-int(-cos(t))dt
I=-tcos(t)+intcos(t)dt=-tcos(t)+sin(t)
Returning to the original variable using
I=-e^xcos(e^x)+sin(e^x)+C