How do you find the antiderivative of e^(2x)(sin x)e2x(sinx)?
2 Answers
Explanation:
I=inte^(2x)sinxdxI=∫e2xsinxdx
We should try integration by parts. Typically when assigning values of
In fact, we see it doesn't really matter which we choose for
{(u=e^(2x),=>,du=2e^(2x)dx),(dv=sinxdx,=>,v=-cosx):}
Then:
I=uv-intvdu
I=-e^(2x)cosx-int(-cosx)(2e^(2x)dx)
I=-e^(2x)cosx+2inte^(2x)cosxdx
Perform integration by parts once more. Again choose
{(u=e^(2x),=>,du=2e^(2x)dx),(dv=cosxdx,=>,v=sinx):}
I=-e^(2x)cosx+2[uv-intvdu]
I=-e^(2x)cosx+2uv-2intvdu
I=-e^(2x)cosx+2e^(2x)sinx-2intsinx(2e^(2x)dx)
I=-e^(2x)cosx+2e^(2x)sinx-4inte^(2x)sinxdx
Notice that we have the integral we started out with on both sides of the equation now--that is, we can write:
I=-e^(2x)cosx+2e^(2x)sinx-4I
Solve for
5I=-e^(2x)cosx+2e^(2x)sinx
5I=e^(2x)(2sinx-cosx)
I=1/5e^(2x)(2sinx-cosx)
inte^(2x)sinxdx=1/5e^(2x)(2sinx-cosx)*C
int \ e^(2x)sin(x) \ dx = e^(2x)(2/5sinx- 1/5cosx) + c
Explanation:
Another approach when dealing with integrals of the form:
I_1 = int \ e^(ax)sin(omega x) \ \ , or\ \ I_2 = int \ e^(ax)cos(omega x)
Is to use some intuition to determine the form of the solution.
Irrespective of the trig function, the results are analogous, so wlog let us consider only
I_1 = A_1e^(ax)cos(omega x) + A_2 \ int \ e^(ax)cos(omega x)
Which doesn't help much until we apply Integration By Parts a second time, giving:
I_1 = A_4e^(ax)sin(omega x) + A_5e^(ax)cos(omega x) + A_6 \ int \ e^(ax)sin(omega x)
Or:
I_1 = A_4e^(ax)sin(omega x) + A_5e^(ax)cos(omega x) + A_6 I_1
Which is now an algebraic equation which can be solved for
I_1 = e^(ax)(A_7sin(omega x) + A_8cos(omega x))
Knowing this, we can start with an assumption of the integral result and differentiate it to see if it works, thus:
Assume a solution of the form:
y= e^(2x)(Asinx + Bcosx)
Differentiating wrt
dy/dx = e^(2x)(Acosx-Bsinx) + 2e^(2x)(Asinx + Bcosx)
" " = e^(2x)((A+2B)cosx+(2A-B)sinx)
We want
cosx: \ A+2B=0
sinx: \ 2A-B=1
Solving these simultaneous equations we get
A=2/5, \ B=-1/5
Thus we have:
y= e^(2x)(2/5sinx- 1/5cosx)
Hence as this is an antiderivative of our initial integral, and we have:
int \ e^(2x)sin(x) \ dx = e^(2x)(2/5sinx- 1/5cosx) + c