How do you find the antiderivative of (e^(2x))sin3x?
1 Answer
int \ e^(2x)sin3x \ dx = e^(2x)/13(2sin3x -3cos3x ) + C
Explanation:
We could use a traditional double application of Integration By Parts. Here is a slightly different approach.
Let:
s = e^(2x)sin3x \ \ \ \ andI_s = int e^(2x)sin3x
c = e^(2x)cos3x \ \ \ \ andI_c = int e^(2x)cos3x
Differentiating wrt
(ds)/dx = e^(2x)(d/dx sin3x) + (d/dx e^(2x))sin3x
\ \ \ \ \ \ = 3e^(2x)cos3x + 2e^(2x)sin3x
(dc)/dx = e^(2x)(d/dx cos3x) + (d/dx e^(2x))cos3x
\ \ \ \ \ \ = -3e^(2x)sin3x + 2e^(2x)cos3x
Now integrate the above results:
int \ (ds)/dx \ dx = int \ 3e^(2x)cos3x + 2e^(2x)sin3x \ dx
=> s= 3I_c + 2I_s ... [A]
int \ (dc)/dx \ dx = int \ -3e^(2x)sin3x + 2e^(2x)cos3x \ dx
=> c = -3I_s + 2I_c ... [B]
3Eq [A] + 2Eq [B}:
3s+2c = 9I_c + 6I_s -6I_s + 4I_c
:. 3s+2c = 13I_c
:. I_c = 1/13(3s+2c)
From [A] we also get:
s = 3/13(3s+2c) + 2I_s
:. s = 9/13s+6/13c + 2I_s
:. I_s = 1/13(2s -3c)
Hence we get the two results:
int \ e^(2x)cos3x \ dx = 1/13(3e^(2x)sin3x+2e^(2x)cos3x) + C
" " = e^(2x)/13(3sin3x+2cos3x) + C
int \ e^(2x)sin3x \ dx = 1/13(2e^(2x)sin3x -3e^(2x)cos3x ) + C
" " = e^(2x)/13(2sin3x -3cos3x ) + C