How do you find the antiderivative of e^(2x) * sqrt(e^x + 1)e2x⋅√ex+1? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Sep 18, 2016 2/15(e^x+1)^(3/2)(3e^x-2)+C215(ex+1)32(3ex−2)+C. Explanation: Let, I=inte^(2x)sqrt(e^x+1)dxI=∫e2x√ex+1dx We use the subst. e^x+1=t^2, or, e^x=t^2-1", so that, "e^xdx=2tdtex+1=t2,or,ex=t2−1, so that, exdx=2tdt. :. I=inte^xsqrt(e^x+1)*e^xdx =int(t^2-1)sqrt(t^2)*2tdt =2int(t^4-t^2)dt =2(t^5/5-t^3/3) =2/15(3t^5-5t^3) =2/15t^3(3t^2-5) =2/15(e^x+1)^(3/2)({3(e^x+1)-5}..............[as, t=(e^x+1)^(1/2)] =2/15(e^x+1)^(3/2)(3e^x-2)+C. Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 4983 views around the world You can reuse this answer Creative Commons License