How do you find the antiderivative of e^(2x) * sqrt(e^x + 1)e2xex+1?

1 Answer
Sep 18, 2016

2/15(e^x+1)^(3/2)(3e^x-2)+C215(ex+1)32(3ex2)+C.

Explanation:

Let, I=inte^(2x)sqrt(e^x+1)dxI=e2xex+1dx

We use the subst. e^x+1=t^2, or, e^x=t^2-1", so that, "e^xdx=2tdtex+1=t2,or,ex=t21, so that, exdx=2tdt.

:. I=inte^xsqrt(e^x+1)*e^xdx

=int(t^2-1)sqrt(t^2)*2tdt

=2int(t^4-t^2)dt

=2(t^5/5-t^3/3)

=2/15(3t^5-5t^3)

=2/15t^3(3t^2-5)

=2/15(e^x+1)^(3/2)({3(e^x+1)-5}..............[as, t=(e^x+1)^(1/2)]

=2/15(e^x+1)^(3/2)(3e^x-2)+C.