How do you find the antiderivative of e2x⋅(tan(e2x))2?
1 Answer
Oct 22, 2016
Explanation:
I=∫e2xtan2(e2x)dx
Let
I=12∫tan2(e2x)(2e2xdx)
I=12∫tan2(u)du
We can integrate this using the identity
I=12∫(sec2(u)−1)du
I=12∫sec2(u)du−12∫du
These are both common integrals:
I=12tan(u)−12u+C
With
I=12tan(e2x)−12e2x+C