How do you find the antiderivative of e2x(tan(e2x))2?

1 Answer
Oct 22, 2016

12tan(e2x)12e2x+C

Explanation:

I=e2xtan2(e2x)dx

Let u=e2x, so that du=2e2xdx. Thus:

I=12tan2(e2x)(2e2xdx)

I=12tan2(u)du

We can integrate this using the identity tan2(u)+1=sec2(u):

I=12(sec2(u)1)du

I=12sec2(u)du12du

These are both common integrals:

I=12tan(u)12u+C

With u=e2x:

I=12tan(e2x)12e2x+C