How do you find the antiderivative of e^(3x)e3x?

1 Answer
Dec 24, 2016

int e^(3x) \ dx = 1/3e^(3x) + C

Explanation:

Using d/dx e^(ax) = ae^(ax) <=> int ae^(ax) \ dx = e^(ax) + C'

:. \ int e^(ax) \ dx = e^(ax)/a + C

Hence, int e^(3x) \ dx = 1/3e^(3x) + C