How do you find the antiderivative of #e^-x#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Mia Nov 16, 2016 #= - e^(-x) + C# Explanation: Let #" "# #u(x) = e^(-x) # #" "# # du(x) = - e^(-x)dx# #" "# #rArr - du(x) = e^(-x)dx# #" "# #" "# #inte^(-x)dx# #" "# #= int-du(x)# #" "# #=-u(x) + C" " C# is a constant #" "# #= - e^(-x) + C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 122730 views around the world You can reuse this answer Creative Commons License