How do you find the antiderivative of {(e^x)/ [(e^(2x)) - 1]}{ex(e2x)−1}?
1 Answer
Explanation:
I=inte^x/(e^(2x)-1)dxI=∫exe2x−1dx
Let
I=inte^x/((e^x)^2-1)dx=int1/(u^2-1)duI=∫ex(ex)2−1dx=∫1u2−1du
Now, we can ley
Plugging these in:
I=int(secthetatantheta)/(sec^2theta-1)d thetaI=∫secθtanθsec2θ−1dθ
Note that
I=int(secthetatantheta)/tan^2thetad thetaI=∫secθtanθtan2θdθ
I=intsectheta/tanthetad thetaI=∫secθtanθdθ
I=int1/costheta(costheta/sintheta)d thetaI=∫1cosθ(cosθsinθ)dθ
I=intcscthetaI=∫cscθ
This is a fairly common integral:
I=-ln(abs(csctheta+cottheta))I=−ln(|cscθ+cotθ|)
We need to rewrite this using
Thus
So:
I=-ln(abs(u/sqrt(u^2-1)+1/sqrt(u^2-1)))+CI=−ln(∣∣∣u√u2−1+1√u2−1∣∣∣)+C
I=-ln(abs((u+1)/sqrt(u^2-1)))+CI=−ln(∣∣∣u+1√u2−1∣∣∣)+C
Bringing in the negative
I=ln(abs(sqrt(u^2-1)/(u+1)))+CI=ln(∣∣∣√u2−1u+1∣∣∣)+C
Through
I=ln(abs(sqrt(e^(2x)-1)/(e^x+1)))+CI=ln(∣∣∣√e2x−1ex+1∣∣∣)+C
Notice that
I=ln(sqrt(e^(2x)-1)/(e^x+1))+CI=ln(√e2x−1ex+1)+C