How do you find the antiderivative of {(e^x)/ [(e^(2x)) - 1]}{ex(e2x)1}?

1 Answer
Oct 22, 2016

ln(sqrt(e^(2x)-1)/(e^x+1))+Cln(e2x1ex+1)+C

Explanation:

I=inte^x/(e^(2x)-1)dxI=exe2x1dx

Let u=e^xu=ex so that du=e^xdxdu=exdx:

I=inte^x/((e^x)^2-1)dx=int1/(u^2-1)duI=ex(ex)21dx=1u21du

Now, we can ley u=secthetau=secθ. This implies that du=secthetatanthetad thetadu=secθtanθdθ.

Plugging these in:

I=int(secthetatantheta)/(sec^2theta-1)d thetaI=secθtanθsec2θ1dθ

Note that 1+tan^2theta=sec^2theta1+tan2θ=sec2θ, so sec^2theta-1=tan^2thetasec2θ1=tan2θ:

I=int(secthetatantheta)/tan^2thetad thetaI=secθtanθtan2θdθ

I=intsectheta/tanthetad thetaI=secθtanθdθ

I=int1/costheta(costheta/sintheta)d thetaI=1cosθ(cosθsinθ)dθ

I=intcscthetaI=cscθ

This is a fairly common integral:

I=-ln(abs(csctheta+cottheta))I=ln(|cscθ+cotθ|)

We need to rewrite this using u=secthetau=secθ. This means we have a right triangle where uu is the hypotenuse, 11 is the side adjacent to thetaθ, and sqrt(u^2-1)u21 is the side opposite thetaθ.

Thus csctheta=u/sqrt(u^2-1)cscθ=uu21 and cottheta=1/sqrt(u^2-1)cotθ=1u21.

So:

I=-ln(abs(u/sqrt(u^2-1)+1/sqrt(u^2-1)))+CI=ln(uu21+1u21)+C

I=-ln(abs((u+1)/sqrt(u^2-1)))+CI=ln(u+1u21)+C

Bringing in the negative 11 as an exponent through the rule Blog(A)=log(A^B)Blog(A)=log(AB):

I=ln(abs(sqrt(u^2-1)/(u+1)))+CI=ln(u21u+1)+C

Through u=e^xu=ex:

I=ln(abs(sqrt(e^(2x)-1)/(e^x+1)))+CI=ln(e2x1ex+1)+C

Notice that sqrt(e^(2x)-1)>0e2x1>0 and e^x+1>0ex+1>0 for all values of xx, so the absolute value bars can be removed:

I=ln(sqrt(e^(2x)-1)/(e^x+1))+CI=ln(e2x1ex+1)+C