How do you find the antiderivative of int 1/sqrt(1+x^2) dx?

1 Answer
Jun 23, 2017

lnabs(x+sqrt(1+x^2))+C

Explanation:

I=int1/sqrt(1+x^2)dx

Let x=tantheta. This implies that dx=sec^2thetad theta.

I=int1/sqrt(1+tan^2theta)sec^2thetad theta

Since 1+tan^2theta=sec^2theta:

I=intsecthetad theta=lnabs(sectheta+tantheta)

Note that tantheta=x and sectheta=sqrt(1+tan^2theta)=sqrt(1+x^2):

I=lnabs(x+sqrt(1+x^2))+C