How do you find the antiderivative of int 1/sqrt(1+x^2) dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer mason m Jun 23, 2017 lnabs(x+sqrt(1+x^2))+C Explanation: I=int1/sqrt(1+x^2)dx Let x=tantheta. This implies that dx=sec^2thetad theta. I=int1/sqrt(1+tan^2theta)sec^2thetad theta Since 1+tan^2theta=sec^2theta: I=intsecthetad theta=lnabs(sectheta+tantheta) Note that tantheta=x and sectheta=sqrt(1+tan^2theta)=sqrt(1+x^2): I=lnabs(x+sqrt(1+x^2))+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 285345 views around the world You can reuse this answer Creative Commons License