How do you find the antiderivative of int 1/(x^2(1+x^2)) dx∫1x2(1+x2)dx?
2 Answers
Partial fraction expansion gives you two trivial integrals:
Explanation:
Use partial fraction expansion:
Let
B = 1
Let x = 1:
-1 = 2A + C + D
Let x = -1
-1 = -2A - C + D
D = -1
A = C = 0
Check:
Explanation:
This method avoids partial fractions and uses a trig substitution.
I=int1/(x^2(1+x^2))dxI=∫1x2(1+x2)dx
Let
I=intsec^2theta/(tan^2theta(1+tan^2theta))d thetaI=∫sec2θtan2θ(1+tan2θ)dθ
Since
I=int1/tan^2thetad theta=intcot^2thetad thetaI=∫1tan2θdθ=∫cot2θdθ
Note that
I=intcsc^2thetad theta-intd thetaI=∫csc2θdθ−∫dθ
These are common integrals:
I=-cottheta-theta+CI=−cotθ−θ+C
Note that
I=-1/x-arctanx+CI=−1x−arctanx+C